Silicate Weathering and Carbon Cycle Controls on the Oligocene-Miocene Transition Glaciation
نویسندگان
چکیده
Changes in both silicate weathering rates and organic carbon burial have been proposed as drivers of the transient “Mi-1” glaciation event at the Oligocene-Miocene transition (OMT; ~23 Ma). However, detailed geochemical proxy data are required to test these hypotheses. Here we present records of Li/Ca, Mg/Ca, Cd/Ca, U/Ca, δO, δC, and shell weight in planktonic foraminifera from marine sediments spanning the OMT in the equatorial Atlantic Ocean. Li/Ca values increase by 1 μmol/mol across this interval. We interpret this to indicate an ~20% increase in silicate weathering rates, which would have lowered atmospheric CO2, potentially forcing the Antarctic glaciation ~ 23 Ma. δ C of thermocline dwelling planktonic foraminifera track the global increase in seawater δC across the OMT and during the Mi-1 event, hence supporting a hypothesized global increase in organic carbon burial rates. High δC previously measured in epipelagic planktonic foraminifera and high Cd/Ca ratios during Mi-1 are interpreted to represent locally enhanced primary productivity, stimulated by increased nutrients supply to surface waters. The fingerprint of high export production and associated organic carbon burial at this site is found in reduced bottom water oxygenation (inferred from high foraminiferal U/Ca) and enhanced respiratory dissolution of carbonates, characterized by reduced foraminiferal shell weight. Replication of our results elsewhere would strengthen the case that weathering-induced CO2 sequestration preconditioned climate for Antarctic ice sheet growth across the OMT, and increased burial of organic carbon acted as a feedback that intensified cooling at this time.
منابع مشابه
Global carbon cycle perturbation across the Eocene-Oligocene climate transition
The Eocene-Oligocene transition (EOT), ~34Ma, marks a tipping point in the long-term Cenozoic greenhouse to icehouse climate transition. Paleorecords reveal stepwise rapid cooling and ice growth across the EOT tightly coupled to a transient benthic δC excursion and a major and permanent deepening of the carbonate compensation depth (CCD). Based on biogeochemical box modeling, Merico et al. (200...
متن کاملGlacial weathering, sulfide oxidation, and global carbon cycle feedbacks.
Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weatheri...
متن کاملLate Eocene to early Miocene ice sheet dynamics and the global carbon cycle
[1] Paired benthic foraminiferal trace metal and stable isotope records have been constructed from equatorial Pacific Ocean Drilling Program Site 1218. The records include the two largest abrupt (<1 Myr) increases in the Cenozoic benthic oxygen isotope record: Oi-1 in the earliest Oligocene ( 34 Ma) and Mi-1 in the earliest Miocene ( 23 Ma). The paired Mg/Ca and oxygen isotope records are used ...
متن کاملAftermath of a snowball Earth
[1] Using a simple 3-box model of the ocean-atmosphere system, we simulate the cycling of carbon and strontium in the aftermath of a global glaciation. Model simulations include the delivery of alkalinity to seawater from intense carbonate and silicate weathering under high pCO2 conditions as well as ocean mixing, air-sea gas exchange, and biological productivity. The dC of the first carbonate ...
متن کاملAstronomical tunings of the Oligocene–Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle
Astronomical tuning of sediment sequences requires both unambiguous cycle pattern recognition in climate proxy records and astronomical solutions, as well as independent information about the phase relationship between these two. Here we present two different astronomically tuned age models for the Oligocene–Miocene transition (OMT) from Integrated Ocean Drilling Program Site U1334 (equatorial ...
متن کامل